第40章:差点把火锅忘了-《我真是外星人》


    第(2/3)页

    “那既然来旁听了,就该尊重一下老师我吧,你尽管讲,让我看看你了解多少。”

    “傅里叶变换表示能将满足一定条件的某个函数表示成三角函数,或者它们的积分的线性组合。

    简单的说傅里叶级数就是用一组正交函数将周期信号表示出来,傅里叶变换就是用一组正交函数将非周期信号表示出来,两者都是将信号从时域转到频域……

    当f(t)在t1与t2之间有定义,且符合狄利赫里条件,就可得到傅里叶级数的复指数形式……”

    躲不过,那就大大方方的回答,正好他在前几天自己学过这玩意,便将自己所掌握的一股脑说了出来。

    老师的眼神从一开始的漫不经心到后来的略有惊讶,逐渐变得欣赏赞许起来。

    坐在第一排的女生回过头来看他,见暖暖的阳光洒落在他身上,充满磁性的声音扰得人芳心大乱,“好帅啊……我们班什么时候有这么帅的帅哥了。”

    在旁的对象看着她,眼神无比幽怨,“你是不喜欢我了吗,你是不是不要我了。”

    “哎呀,我只是看看嘛,我最爱的当然还是乖乖你啦!”女生连忙又分出注意力去哄对象,但那眼珠未曾从颜安身上挪开过。

    几分钟后,老师见颜安要讲下去简直不带停的,连忙让他打住。

    再这样下去,这堂课怕是都要被他一个人给霸占了。

    颜安坐下后,无视周围投来的数道目光,专心致志继续学习。

    他会学习傅里叶变换是因为量子计算机上使用的shor算法,其最关键之处就是利用量子傅里叶变换求f(x)的周期,只要求得了f(x)的周期,就可以对大整数N进行分解。

    而他正在学的因数分解算法则与之不同,第一步采用数域筛法构造代数数域,这是数论中已知效率最高的分解整数的算法,找一个数对的非空集合,通过计算得到n的因子gcd(x-y,n)。

    数域构造实际上是不可约多项式f属于Z[x]的构造,以基m的方法找f。取r是一个比较小的整数,m=[(rn)],然后把rn表示成m进制,计算后选取较小的结果作为f。

    这还仅仅是第一步,虽然叫算法,但完全是以数学思想入手,将人脑难以进行的大数计算用电脑代替,其中包含的数学工具不止一种。

    它不是专门用来破解RSA的,而是为解决整数分解困难问题而存在的,所有依赖于此的算法,无论是RSA加密还是Rabin加密都在它的攻击范围内。

    透过第一步的数域筛法,颜安看到了RSA有效搜索算法的影子。

    在此前他一直以为这两算法之间没有递进联系,现在知道了却没有期待的灵感爆发,仅仅是想通了,认识更深了。

    第二步就更出人意料了,在筛法之后,引入了椭圆曲线进行求解,这两种方法单独拿出来都可以用于求解大整数的质因数,联合起来使用却是第一次见,叶罗林杰斯特用一种巧妙的方式在两种方法间找到了共通之处。

    正当他要继续学下去的时候,上午的最后一道铃声响起,颜安后知后觉反应过来,原来已经过了这么久,他太过投入以至于忽略了周围的情况。

    而这一上午的沉浸式学习,才让他粗略学完数域筛法求解的第一步,还没正式进入到椭圆曲线的部分。

    找了个地方吃饭填饱肚子,一边吃,他脑子里还在一边念着,对于数域筛法的理解更深入了些。
    第(2/3)页